Telegram Group & Telegram Channel
Visual-ARFT: открытый метод обучения AI-агентов обходит GPT-4o в мультимодальных задачах и снижает затраты на обучение на 88%

Исследователи обучали модель Qwen2.5-VL двум сценариям:
Агентный поиск: модель планирует, декомпозирует исходную задачу и извлекает информацию из внешних источников для ответа на сложные мультимодальные многошаговые VQA вопросы.
Агентное программирование: модель рассуждает о задаче, пишет и выполняет код для обработки изображений и решения сложных задач визуального анализа.

Visual-ARFT использует модульную систему верифицируемых вознаграждений:
Format Reward учит соблюдать четкий формат выходных данных, включая теги <think>, <search>, <code> и <answer>. Это стимулирует структурированное пошаговое рассуждение и корректное использование инструментов.
Accuracy Rewards оценивают качество ответов, используя F1-score, оценивая семантическое сходство поисковых запросов и выполнимость сгенерированного кода.

На MAT-Coding модель Qwen2.5-VL-7B с Visual-ARFT достигает улучшений +18.56% F1 и +13.00% EM по сравнению с базовой версией, превосходя GPT-4o.
На MAT-Search та же модель демонстрирует прирост +10.28% F1 и +8.66% EM.

Код доступен на Github.

#Stateoftheart



tg-me.com/opendatascience/2307
Create:
Last Update:

Visual-ARFT: открытый метод обучения AI-агентов обходит GPT-4o в мультимодальных задачах и снижает затраты на обучение на 88%

Исследователи обучали модель Qwen2.5-VL двум сценариям:
Агентный поиск: модель планирует, декомпозирует исходную задачу и извлекает информацию из внешних источников для ответа на сложные мультимодальные многошаговые VQA вопросы.
Агентное программирование: модель рассуждает о задаче, пишет и выполняет код для обработки изображений и решения сложных задач визуального анализа.

Visual-ARFT использует модульную систему верифицируемых вознаграждений:
Format Reward учит соблюдать четкий формат выходных данных, включая теги <think>, <search>, <code> и <answer>. Это стимулирует структурированное пошаговое рассуждение и корректное использование инструментов.
Accuracy Rewards оценивают качество ответов, используя F1-score, оценивая семантическое сходство поисковых запросов и выполнимость сгенерированного кода.

На MAT-Coding модель Qwen2.5-VL-7B с Visual-ARFT достигает улучшений +18.56% F1 и +13.00% EM по сравнению с базовой версией, превосходя GPT-4o.
На MAT-Search та же модель демонстрирует прирост +10.28% F1 и +8.66% EM.

Код доступен на Github.

#Stateoftheart

BY Data Science by ODS.ai 🦜






Share with your friend now:
tg-me.com/opendatascience/2307

View MORE
Open in Telegram


Data Science by ODS ai 🦜 Telegram | DID YOU KNOW?

Date: |

To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

Data Science by ODS ai 🦜 from id


Telegram Data Science by ODS.ai 🦜
FROM USA